联系电话(余生)
13415352898
联系电话(余生)
13415352898

?
所属类别 :
生活日用品|科技产品

有机发光二极管又称为有机电激光显示(Organic Light-Emitting Diode,OLED),由美籍华裔教授在实验室中发现,由此展开了对OLED的研究。OLED显示技术具有自发光的特性,采用非常薄的有机材料涂层和玻璃基板,当有电流通过时,这些有机材料就会发光,而且OLED显示屏幕可视角度大,并且能够节省电能。

有机发光材料

有机材料的特性深深地影响元件之光电特性表现。在阳极材料的选择上,材料本身必需是具高功函数(High work function)与可透光性,所以具有4.5eV-5.3eV的高功函数、性质稳定且透光的ITO透明导电膜,便被广泛应用于阳极。在阴极部分,为了增加元件的发光效率,电子与电洞的注入通常需要低功函数(Low work function)的Ag、Al、Ca、In、Li与Mg等金属,或低功函数的复合金属来制作阴极(例如:Mg-Ag镁银)。

适合传递电子的有机材料不一定适合传递空穴,所以有机发光二极体的电子传输层和空穴传输层必须选用不同的有机材料。目前最常被用来制作电子传输层的材料必须制膜安定性高、热稳定且电子传输性佳,一般通常采用萤光染料化合物。如Alq、Znq、Gaq、Bebq、Balq、DPVBi、ZnSPB、PBD、OXD、BBOT等。而空穴传输层的材料属于一种芳香胺萤光化合物,如TPD、TDATA等有机材料。

有机发光层的材料须具备固态下有较强萤光、载子传输性能好、热稳定性和化学稳定性佳、量子效率高且能够真空蒸镀的特性,一般有机发光层的材料使用通常与电子传输层或电洞传输层所采用的材料相同,例如Alq被广泛用于绿光,Balq和DPVBi则被广泛应用于蓝光。

一般而言,OLED可按发光材料分为两种:小分子OLED和高分子OLED(也可称为PLED)。小分子OLED和高分子OLED的差异主要表现在器件的制备工艺不同:小分子器件主要采用真空热蒸发工艺,高分子器件则采用旋转涂覆或喷涂印刷工艺。小分子材料厂商主要有:Eastman、Kodak、出光兴产、东洋INK制造、三菱化学等;高分子材料厂商主要有:CDT、Covin、Dow Chemical、住友化学等。目前国际上与OLED有关的专利已经超过1400份,其中最基本的专利有三项。小分子OLED的基本专利由美国Kodak公司拥有,高分子OLED的专利由英国的CDT(Cambridge DisPlay Technology)和美国的Uniax公司拥有。

关键工艺

一、氧化铟锡(ITO)基板前处理

(1) ITO表面平整度:ITO目前已广泛应用在商业化的面板制造,其具有高透射率、低电阻率及高功函数等优点。一般而言,利用射频溅镀法(RF sputtering)所制造的ITO,易受工艺控制因素不良而导致表面不平整,进而产生表面的尖端物质或突起物。另外高温锻烧及再结晶的过程亦会产生表面约10 ~ 30nm的突起层。这些不平整层的细粒之间所形成的路径会提供空穴直接射向阴极的机会,而这些错综复杂的路径会使增加。一般有三个方法可以解决这表面层的影响?U一是增加空穴注入层及空穴传输层的厚度以降低漏电流,此方法多用于PLED及空穴层较厚的OLED(~200nm)。二是将ITO玻璃再处理,使表面光滑。三是使用其它镀膜方法使表面平整度更好。

(2) ITO功函数的增加:当空穴由ITO注入HIL时,过大的位能差会产生萧基能障,使得空穴不易注入,因此如何降低ITO / HIL接口的位能差则成为ITO前处理的重点。一般我们使用O2-Plasma方式增加ITO中氧原子的饱和度,以达到增加功函数之目的。ITO经O2-Plasma处理后功函数可由原先之4.8eV提升至5.2eV,与HIL的功函数已非常接近。

加入辅助电极,由于OLED为电流驱动组件,当外部线路过长或过细时,于外部电路将会造成严重之电压梯度,使真正落于OLED组件之电压下降,导致面板发光强度减少。由于ITO电阻过大(10 ohm / square),易造成不必要之外部功率消耗,增加一辅助电极以降低电压梯度成了增加发光效率、减少驱动电压的快捷方式。铬(Cr:Chromium)金属是最常被用作辅助电极的材料,它具有对环境因子稳定性佳及对蚀刻液有较大的选择性等优点。然而它的电阻值在膜层为100nm时为2 ohm / square,在某些应用时仍属过大,因此在相同厚度时拥有较低电阻值的铝(Al:Aluminum)金属(0.2 ohm / square)则成为辅助电极另一较佳选择。但是,铝金属的高活性也使其有信赖性方面之问题因此,多叠层之辅助金属则被提出,如:Cr / Al / Cr或Mo / Al / Mo,然而此类工艺增加复杂度及成本,故辅助电极材料的选择成为OLED工艺中的重点之一。

二、阴极工艺

在高解析的OLED面板中,将细微的阴极与阴极之间隔离,一般所用的方法为蘑菇构型法(Mushroom structure approach),此工艺类似印刷技术的负光阻显影技术。在负光阻显影过程中,许多工艺上的变异因子会影响阴极的品质及良率。例如,体电阻、介电常数、高分辨率、高Tg、低临界维度(CD)的损失以及与ITO或其它有机层适当的黏着接口等。

三、封装

⑴ 吸水材料:一般OLED的生命周期易受周围水气与氧气所影响而降低。水气来源主要分为两种:一是经由外在环境渗透进入组件内,另一种是在OLED工艺中被每一层物质所吸收的水气。为了减少水气进入组件或排除由工艺中所吸附的水气,一般最常使用的物质为吸水材(Desiccant)。Desiccant可以利用化学吸附或物理吸附的方式捕捉自由移动的水分子,以达到去除组件内水气的目的。

⑵ 工艺及设备开发:封装工艺之流程如图四所示,为了将Desiccant置于盖板及顺利将盖板与基板黏合,需在真空环境或将腔体充入不活泼气体下进行,例如氮气。值得注意的是,如何让盖板与基板这两部分工艺衔接更有效率、减少封装工艺成本以及减少封装时间以达最佳量产速率,已俨然成为封装工艺及设备技术发展的3大主要目标。

彩色化技术

显示器全彩色是检验显示器是否在市场上具有竞争力的重要标志,因此许多全彩色化技术也应用到了O上,按面板的类型通常有下面三种:RGB像素独立发光,光色转换(Color Conversion)和彩色滤光膜(Color Filter)。

一、RGB象素独立发光

利用发光材料独立发光是目前采用最多的彩色模式。它是利用精密的金属荫罩与CCD象素对位技术,首先制备红、绿、蓝三基色发光中心,然后调节三种颜色组合的混色比,产生真彩色,使三色OLED元件独立发光构成一个像素。该项技术的关键在于提高发光材料的色纯度和发光效率,同时金属荫罩刻蚀技术也至关重要。

目前,有机小分子发光材料AlQ3是很好的绿光发光小分子材料,它的绿光色纯度,发光效率和稳定性都很好。但OLED最好的红光发光小分子材料的发光效率只有31mW,寿命1万小时,蓝色发光小分子材料的发展也是很慢和很困难的。有机小分子发光材料面临的最大瓶颈在于红色和蓝色材料的纯度、效率与寿命。但人们通过给主体发光材料掺杂,已得到了色纯度、发光效率和稳定性都比较好的蓝光和红光。

高分子发光材料的优点是可以通过化学修饰调节其发光波长,现已得到了从蓝到绿到红的覆盖整个可见光范围的各种颜色,但其寿命只有小分子发光材料的十分之一,所以对高分子聚合物,发光材料的发光效率和寿命都有待提高。不断地开发出性能优良的发光材料应该是材料开发工作者的一项艰巨而长期的课题。

随着OLED显示器的彩色化、高分辨率和大面积化,金属荫罩刻蚀技术直接影响着显示板画面的质量,所以对金属荫罩图形尺寸精度及定位精度提出了更加苛刻的要求。

二、光色转换 光色转换是以蓝光OLED结合光色转换

膜阵列,首先制备发蓝光OLED的器件,然后利用其蓝光激发光色转换材料得到红光和绿光,从而获得全彩色。该项技术的关键在于提高光色转换材料的色纯度及效率。这种技术不需要金属荫罩对位技术,只需蒸镀蓝光OLED元件,是未来大尺寸全彩色OLED显示器极具潜力的全彩色化技术之一。但它的缺点是光色转换材料容易吸收环境中的蓝光,造成图像下降,同时光导也会造成画面质量降低的问题。目前掌握此技术的日本出光兴产公司已生产出10英寸的OLED显示器。

三、彩色滤光膜

此种技术是利用白光OLED结合彩色滤光膜,首先制备发白光OLED的器件,然后通过彩色滤光膜得到三基色,再组合三基色实现彩色显示。该项技术的关键在于获得高效率和高纯度的白光。它的制作过程不需要金属荫罩对位技术,可采用成熟的LCD的彩色滤光膜制作技术。所以是未来大尺寸全彩色OLED显示器具有潜力的全彩色化技术之一,但采用此技术使透过彩色滤光膜所造成光损失高达三分之二。目前日本TDK公司和美国Kodak公司采用这种方法制作OLED显示器。

RGB像素独立发光,光色转换和彩色滤光膜三种制造OLED显示器全彩色化技术,各有优缺点。可根据工艺结构及有机材料决定。

驱动方式

OLED的驱动方式分为主动式驱动(有源驱动)和被动式驱动(无源驱动)。

一、无源驱动(PM OLED)

其分为静态驱动电路和动态驱动电路。

⑴ 静态驱动方式:在静态驱动的有机发光显示器件上,一般各有机电致发光像素的阴极是连在一起引出的,各像素的阳极是分立引出的,这就是共阴的连接方式。若要一个像素发光只要让恒流源的电压与阴极的电压之差大于像素发光值的前提下,像素将在恒流源的驱动下发光,若要一个像素不发光就将它的阳极接在一个负电压上,就可将它反向截止。但是在图像变化比较多时可能出现交叉效应,为了避免我们必须采用交流的形式。静态驱动电路一般用于段式显示屏的驱动上。

⑵ 动态驱动方式:在动态驱动的有机发光显示器件上人们把像素的两个电极做成了矩阵型结构,即水平一组显示像素的同一性质的电极是共用的,纵向一组显示像素的相同性质的另一电极是共用的。如果像素可分为N行和M列,就可有N个行电极和M个列电极。行和列分别对应发光像素的两个电极。即阴极和阳极。在实际电路驱动的过程中,要逐行点亮或者要逐列点亮像素,通常采用逐行扫描的方式,行扫描,列电极为数据电极。实现方式是:循环地给每行电极施加脉冲,同时所有列电极给出该行像素的驱动电流脉冲,从而实现一行所有像素的显示。该行不再同一行或同一列的像素就加上反向电压使其不显示,以避免“交叉效应”,这种扫描是逐行顺序进行的,扫描所有行所需时间叫做帧周期。

在一帧中每一行的选择时间是均等的。假设一帧的扫描行数为N,扫描一帧的时间为1,那么一行所占有的选择时间为一帧时间的1/N该值被称为占空比系数。在同等电流下,扫描行数增多将使占空比下降,从而引起有机电致发光像素上的电流注入在一帧中的有效下降,降低了显示质量。因此随着显示像素的增多,为了保证显示质量,就需要适度地提高驱动电流或采用双屏电极机构以提高占空比系数。

除了由于电极的公用形成交叉效应外,有机电致发光显示屏中正负电荷载流子复合形成发光的机理使任何两个发光像素,只要组成它们结构的任何一种功能膜是直接连接在一起的,那两个发光像素之间就可能有相互串扰的现象,即一个像素发光,另一个像素也可能发出微弱的光。这种现象主要是因为有机功能薄膜厚度均匀性差,薄膜的横向绝缘性差造成的。从驱动的角度,为了减缓这种不利的串扰,采取反向截至法也是一行之有效的方法。

带灰度控制的显示:显示器的灰度等级是指黑白图像由黑色到白色之间的亮度层次。灰度等级越多,图像从黑到白的层次就越丰富,细节也就越清晰。灰度对于图像显示和彩色化都是一个非常重要的指标。一般用于有灰度显示的屏多为点阵显示屏,其驱动也多为动态驱动,实现灰度控制的几种方法有:控制法、空间灰度调制、时间灰度调制。

二、有源驱动(AM OLED)

有源驱动的每个像素配备具有开关功能的低温多晶硅薄膜晶体管(LowTemperature Poly-Si Thin Film Transistor, LTP-Si TFT),而且每个像素配备一个电荷存储电容,外围驱动电路和显示阵列整个系统集成在同一玻璃基板上。与LCD相同的TFT结构,无法用于OLED。这是因为LCD采用电压驱动,而OLED却依赖电流驱动,其亮度与电流量成正比,因此除了进行ON/OFF切换动作的选址TFT之外,还需要能让足够电流通过的导通阻抗较低的小型驱动TFT。

有源驱动属于静态驱动方式,具有存储效应,可进行100%负载驱动,这种驱动不受扫描电极数的限制,可以对各像素独立进行选择性调节。

有源驱动无占空比问题,驱动不受扫描电极数的限制,易于实现高亮度和高分辨率。

有源驱动由于可以对亮度的红色和蓝色像素独立进行灰度调节驱动,这更有利于OLED彩色化实现。

有源矩阵的驱动电路藏于显示屏内,更易于实现集成度和小型化。另外由于解决了外围驱动电路与屏的连接问题,这在一定程度上提高了成品率和可靠性。

三、主动式与被动式两者比较

被动式 主动式

瞬间高高密度发光(动态驱动/有选择性) 连续发光(稳态驱动)

面板外附加IC芯片 TFT驱动电路设计/内藏薄膜型驱动IC

线逐步式扫描 线逐步式抹写数据

阶调控制容易 在TFT基板上形成有机EL画像素

低成本/高电压驱动 低电压驱动/低耗电能/高成本

设计变更容易、交货期短(制造简单) 发光组件寿命长(制程复杂)

简单式矩阵驱动+OLED LTPS TFT+OLED

中国产业化

一、研发单位

电子科技大学、清华大学、华南理工、北京大学、吉林大学、上海大学、香港城市大学、辽宁科技大学、长春光机所、北京化学所等高校、研究所、以及北京京东方、上海广电电子、中国普天集团、长春竺宝科技、东方通信、云南北方奥雷德光电科技股份亚洲彩票等企业约40多家。

二、产业化

北京维信诺科技亚洲彩票,清华大学技术入股,建有中国大陆第一条OLED试生产线,与清华一起申请了190多项国内外OLED专利。开发了128*64、132*64、16*1等OLED产品。并研制成功了64(RGB)*64、 96(RGB)*64、160(RGB)*128彩色OLED,96*64多色及240单色OLED样品,并在2008年进入规模化生产。2005年11月开始在昆山筹备建立中国大陆第一条OLED大规模生产线。

上:教炫返(上海大学),与杭州士兰微电子合作,最近成功开发出具有自主知识产权的国内第一款OLED专用驱动IC芯片。其包括一颗80行驱动(SC1680)和一颗80列驱动(SC16805)采用QFP封装,用于手机屏的TAB和COF用驱动IC也已开发出样品。

汕尾信利半导体(技术:韩国Viatron,设备:口本Evatach),该公司的OLED生产线是中国大陆第一条具有规模生产能力的生产线。

云南北方奥雷德光电科技股份亚洲彩票,是中国第一家可以生产AMOLED微型显示器的公司,除现有0.5寸SVGA分辨率OLED微型显示器外,对AM-OLED微型显示器产品进行持续创新,将逐步形成5寸、6寸、7寸、9.7寸等,分辨率从800×600到1920×1080的OLED微型显示器。填补了国内AMOLED微型显示器领域的空白。

三、驱动IC

深圳先科显示(城市大学、晶门科技)。香港晶门科技发布一款新的带有的OLED彩色驱动IC-SSD1332。其是一款集成控制器及内建DC/DC电压转换器的单芯片96*64,65K色的OLED驱动芯片,可用于手机及其它移动终端。

市场前景

一、OLED

据市场研究公司iSuppli最新发表的研究报告称,2013年全球OLED(有机发光二极管)电视机出货量将从2007年的3000台增长到280万台,复合年增长率为212.3%。从全球销售收入看,2013年全球OLED电视机的销售收入将从2007年的200万美元增长到14亿美元,复合年增长率为206.8%。

iSuppli称,OLED显示技术要对市场产生真正的影响还需要克服一些挑战。首先,AMOLED显示屏制造工艺还不充分。随着显示屏尺寸的加大,成品率损失和制造损失也越来越大。此外,OLED显示屏材料的使用寿命仍需要提高。AMOLED供应商不能保证产量。不过,OLED电视机也有许多优点。OLED电视不需要背光,因此比其它技术更省电和更多做的更薄。OLED电视响应时间非常快,在观看电视的时候没有移动:南窒。此外,OLED电视比其它技术的色彩更丰富。

索尼在2007年12月在日本市场推出了售价1800美元的11英寸OLED电视机,首先进入了这个市场。包括东芝和松下在内的一些厂商预计将在2009年进入这个市场。

二、商品化过程

1997年Pioneer发表了配备解析度为256x64的单色PM-OLED面板的车用音响;1999年Tohoku Pioneer成功开发出5.2吋、解析度为320x240 pixels、256色的全彩(Full color)PM-OLED面板;2000年Motorola移动电话「Timeport」采用Tohoku Pioneer之1.8吋多彩(Area color)PM-OLED面板;2001年Samsung推出搭载全彩PM-OLED面板之行动电话;2002年Fujitsu行动电话F505i次屏幕搭配Tohoku Pioneer之1.0吋全彩PM-OLED面板,自此PM-OLED在行动电话次萤幕的应用随之大量兴起。

三、P-OLED微显示器

研发暨生产金氏记录最小P-OLED屏幕的Micr oEmissive Displays(MED)公司,将于今年中由日本数位相机厂NHJ推出首宗消费电子产品,结合录音拨放MP3和高解析度数位相机,MED的ME3203为低耗电1/4 VGA解析度(3 20 x RGB x 240)P-OLED微显示器(Microdis play),将用在新产品的电子观景窗和目镜上。据了解,这种全球新产品是由台湾某数位相机厂设计研发出来。

MED策略长安德伍(Ian Underwood)表示,针对微显示器的技术商业化,MED已投入五年的时间,目前已臻成熟,且做到世界级的独特技术层级。

四、OLED在显示和照明领域的地位

有机发光二极管(OLED)技术在提振行业当前的不景气方面迈出了一大步,它正在显示和照明领域开拓出许多高利润的应用。有迹象表明,有源矩阵(AM)OLED而非无源矩阵(PM)OLED将最终主宰这一应用领域。

DisplaySearch公司预测,到2015年,OLED显示屏的营收将从2008年的5.91亿美元增长到60亿美元,年复合增长率(CAGR)将达到40%。届时,OLED电视将成为最大的应用,市场容量总计达26亿美元。手机显示屏(目前主要采用各种尺寸的PMOLED)市场将占到19亿美元(图1A)。 该市场研究公司还表示,虽然PMOLED显示屏的单位出货量到2015年将一直增长,但其收入将保持平稳。与此同时,AMOLED的单位出货量将增加两倍,并将在2011年超过PMOLED的出货量(图1b)。

DisplaySearch公司指出,目前PMOLED存在严重供过于求的情况。此外,许多建立了大型PMOLED生产线的公司正发现,由于有限的应用和来自LCD显示屏的竞争,这些生产线现在已处于开工不足状况。与LCD显示屏相比,PMOLED显示屏无法像LCD那样以很高性价比做出大型显示屏,因此其应用已受到局限。 “去年,AMOLED需求的增长弥补了PMOLED的下滑,”DisplaySearch显示技术总监JenniferColegrove说,“展望未来,为OLED找到一个LCD难以与其竞争的缝隙市场是很重要的,如柔性或透明显示或照明。OLED开发商也应该寻找机会把他们的技术与其他热点技术(如)结合起来。” 另一方面,由于预期对AMOLED有大量需求,因此AMOLED的生产能力正在急剧扩张。与LCD相比,OLED显示屏具有以下优点:更薄的外形、更宽的视角、更快的响应速度、更低功耗、更好的色域和色彩还原、更高的对比度和更宽的工作温度范围。 不过,各公司仍然必须解决如何实现更大尺寸的OLED面板和提供更长的工作寿命等问题。另外,还需要更高效且寿命更长的蓝光OLED。为解决这些问题,设计人员正在转向非晶硅、改进的材料、薄膜晶体管(TFT)和金属氧化物驱动器电路、以及可实现TFT底板更高生产良率的更佳工艺方法。 AMOLED像素启动和关闭的速度比传统电影中像素运动的速度快两倍多。比PMOLED响应速度更快、功耗更低的AMOLED显示屏是全动态视频和图形显示应用的理想选择。AMOLED更适合于大屏幕显示器和电视机、电子标志牌和广告牌。 “AMOLED的能效比PMOLED好很多,”UniversalDisplayCorp(UDC)技术商业化副总裁JaniceMahon说。

生产设备

目前OLED生产设备有美国MicroFab,日本富士,韩国LG等的设备。    

无窗飞机

英国工艺创新中心(CPI)认为,无窗飞机将是未来空中旅行的一个标志,其正致力于用有机发光二极管(OLED)技术构造无窗飞机的迷人视野。

参考资料:


联系人:余经理

电话:13415352898

邮件:3453201070@qq.com
地址:广东省中山市小榄镇万盛路30号
微信扫描关注我们: